2 零夾雜鋼
2.1 零夾雜鋼的意義及發(fā)展趨勢
當材料和純凈度達到一定程度時,其性能會發(fā)生某些突變,如超純鐵([Fe]>99.995%)的耐酸侵蝕能力與金或鉑的抗腐蝕能力相當;18Cr2NiMo不銹鋼中的[P]含量從0.026%降低到0.002%時,其耐硝酸的腐蝕能力得到極大地提高。金屬材料的加工性能、疲勞性能和韌性等主要決定于材料中非金屬夾雜物的性質(zhì)、尺寸和數(shù)量,只有當非金屬夾雜物的尺寸小于1μm,且其數(shù)量少到彼此間距大于10μm時,它們才不會對材料的宏觀性能產(chǎn)生影響。
為了研究鋼在極限夾雜物含量下的各項理化性能和機械力學(xué)性能,日本科技廳金屬材料研究所用冷坩堝懸浮熔煉技術(shù),通過去除夾雜物形成元素和鋼中的夾雜物,生產(chǎn)超高潔凈鋼材料;加拿大Mitchell教授和新日鐵Fukumoto提出了“零夾雜”鋼的概念。所謂“零夾雜”并不是鋼中沒有夾雜物存在,而是指鋼液在凝固以前不析出任何非金屬夾雜物,鋼液在固相狀態(tài)下析出的非金屬夾雜物是高度彌散分布的,其尺寸小于1μm,這些夾雜物在光學(xué)顯微鏡下作常規(guī)檢驗時已觀察不到。因此,“零夾雜”鋼實際上是含亞微米夾雜物的鋼。日本神戶制鋼的Nishi和Ogawa等用真空感應(yīng)爐(VIF)熔煉出航空工業(yè)用的250馬氏體時效鋼時,將T.O、S和N分別降低到(2~5)×10-6、(2~3)×10-6和(6~9)×10-6,鋼中的夾雜物尺寸最大為6~8μm,主要分布在2~4μm之間。Fukumoto和Mitchell用電子束冷坩堝熔煉法(EBCHM)熔煉適用于電子元件的奧氏體不銹鋼時,將鋼的[T.O]降低到(2~3)×10-6,鋼中的氧化物夾雜主要來自原始合金中的CaO夾雜。因此,可能存在的亞微米夾雜物來自兩部分,一部分是由原始合金或初煉爐帶來的含Al2O3、SiO2、CaO的夾雜物,另一部分是鋼液凝固過程中析出的氧化物、硫化物和氮化物夾雜。
鋼液中析出硫化物和氮化物的溶積度遠比析出氧化物的溶積度高,在一般情況下液相中不可能析出硫化物和氮化物。因此,所謂的“零夾雜”鋼實質(zhì)上是指“零氧化物夾雜”鋼。要獲得真正的“零夾雜”鋼,除了控制鋼中的氧含量以及脫氧元素含量及偏析,使它們的溶度積低于固相線溫度時的平衡溶度積,以防止在固相線溫度以前析出氧化物夾雜以外,還在于如何使原始合金帶來的氧化物夾雜從鋼中氣化去除。
當金屬材料的晶粒度由幾十微米降到微米級、及至亞微米級、納米級時,材料的性能會發(fā)生質(zhì)的變化。對這樣的細晶粒材料,如何通過特殊的精煉工藝消除非金屬夾雜物的影響對材料科學(xué)的發(fā)展有重要的影響。Mitchell、Fukumoto、Nishi和Ogawa等對他們研制的超級純凈鋼的性能研究仍停留在常規(guī)晶粒度下材料性能的比較,對微米級、亞微米級超級純凈鋼的性能的研究還未見報道。目前我國正在開發(fā)“新一代鋼鐵材料(超級鋼)重大基礎(chǔ)研究”項目的研究,正是基于通過材料的形變和熱處理實現(xiàn)材料超細晶?;?達到提高材料強韌性的目的。因此,開展極限含量非金屬夾雜物鋼或“零夾雜”鋼精煉理論及工藝研究,對制備“零夾雜”超級純凈鋼以及超細晶粒超級純凈鋼性能的研究具有十分重要的意義。
當夾雜物尺寸<1μm時,夾雜物將發(fā)揮有益影響:(1)微細析出(碳氮化合物,硫化物,氧化物)對晶界起釘扎作用;(2)固溶夾雜拖拽晶界移動的效果;(3)可抑制再結(jié)晶和晶粒長大。
2.2 零夾雜超級純凈鋼精煉工藝原則
根據(jù)熱力學(xué)計算,精煉零夾雜超級純凈鋼的關(guān)鍵是:(1)控制鋼中的酸溶鋁含量低于10×10-6;(2)避免原材料中存在含CaO的夾雜物;(3)避免爐襯污染;(4)高真空度精煉。
冶煉效果:42CrMo鋼,T.O=(2~4)×10-6,σ-1在720MPa,疲勞壽命由原商業(yè)產(chǎn)品107提高到109。
3 結(jié)論
(1)超潔凈鋼應(yīng)針對不同鋼種、不同用途的特殊要求,在工業(yè)生產(chǎn)中采取不同的精煉手段,達到各個突破,滿足鋼種性能要求,不追求泛泛的“超純”。
(2)零夾雜鋼,即鋼中夾雜物尺寸小于1μm。要獲得零夾雜鋼,既要控制鋼中氧與脫氧元素的活度積,防止固相線溫度以前析出夾雜物,還要使原始合金中帶來的氧化物夾雜從鋼中氣化去除。
(3)金屬材料的晶粒度已達微米級,消除非金屬夾雜物的影響,對材料科學(xué)發(fā)展至關(guān)重要。
——本文摘自《中國金相分析網(wǎng)》